Linear Algebra II
12/04/2010, Monday, 9:00-12:00

Gram-Schmidt process

Consider the vector space of P; with the inner product

(p,q) = p(=1)g(~1) +p(0)q(0) + p(1)q(1). €
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(a) TIs the basis {1,z,2?} an orthonormal basis? — )‘? + 40‘4 /\c‘al
(b) By applying the Gram-Schmidt process, find an orthonormal basis. LY
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(¢) Find cosrdinates of the polynomial 1 + z + z? in the orthonormal basis obtained above.
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Singular value decomposition
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(a) Let A € R™ ", Show that ATA and AAT are similar. S -’/4

(b) Two matrices A, B € R™*™ are called unitarily equivalent if there exists an orthogonal matrix
W € R™*™ guch that A = WBWT. Prove of disprove the statements:

(i) If two matrices are unitarily equivalent then they have the same singular values. ™

(i) If two matrices have the same singular values then they are unitarily equivalent. §

Positive definite matrices
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(a) Let
a =D
A=[|b-b b
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where a and b are real numbers. Plot the region of (a,b)-plane in which A is positive definite.

(b) Consider the function
z
flz,y) = a2t

(i) Show that (1,1) is a stationary point.
(ii) Determine the nature (local minimum, maximum, or saddle) of this stationary point.
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Cayley-Hamilton theorem

(a) Let A € R™ " be an invertible matrix and pa(}) be its characteristic polynomial. Define
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qg(\) = IT(O))\ PA(X) 7*:( —A' Pk(ﬁ§;o

Show that g(A~!) = 0. e
(b) Let :

Find (A + I)*°%. T Ao 1
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Diagonalization and Jordan form

(a) Consider the matrix
a b
X ta

where a and b are real numbers. For which values of (a, b) is this matrix diagonalizable? 4\"(,
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(b) Consider the matrix

Show that det(AI — A) = (A — 1)3. Put it into the Jordan canonical form.
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