Linear Algebra II 12/04/2010, Monday, 9:00-12:00

Gram-Schmidt process

1

Consider the vector space of P_3 with the inner product

$$\langle p, q \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1).$$

(a) Is the basis $\{1, x, x^2\}$ an orthonormal basis?

(b) By applying the Gram-Schmidt process, find an orthonormal basis.

(c) Find coordinates of the polynomial $1 + x + x^2$ in the orthonormal basis obtained above.

专师是

Singular value decomposition

S=AT (a) Let $A \in \mathbb{R}^{n \times n}$. Show that A^TA and AA^T are similar.

(b) Two matrices $A, B \in \mathbb{R}^{n \times n}$ are called unitarily equivalent if there exists an orthogonal matrix $W \in \mathbb{R}^{m \times m}$ such that $A = WBW^T$. Prove of disprove the statements:

(i) If two matrices are unitarily equivalent then they have the same singular values. ×

(ii) If two matrices have the same singular values then they are unitarily equivalent.

Positive definite matrices

(a) Let

3

$$A = \begin{bmatrix} a & b & 0 \\ b & b & b \\ 0 & b & a \end{bmatrix}$$

where a and b are real numbers. Plot the region of (a, b)-plane in which A is positive definite.

(b) Consider the function

$$f(x,y) = \frac{x}{y^2} + \frac{y}{x^2} + xy + 1.$$

(i) Show that (1,1) is a stationary point.

(ii) Determine the nature (local minimum, maximum, or saddle) of this stationary point.

minimum (A=3, x=q)

(a) Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix and $p_A(\lambda)$ be its characteristic polynomial. Define

$$q(\lambda) = \frac{1}{p_A(0)} \lambda^n p_A(\frac{1}{\lambda}). \qquad \frac{1}{A} = A \quad p_A(A) = 0$$

Show that $q(A^{-1}) = 0$.

(b) Let

5

 $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -2 & -3 & -3 \end{bmatrix}.$ $(A+I)^{3h} = (-I)^{h} de$

Find $(A + I)^{3000}$.

Diagonalization and Jordan form

(a) Consider the matrix

$$\begin{bmatrix} a & b \\ 1 & a \end{bmatrix}$$

where a and b are real numbers. For which values of (a,b) is this matrix diagonalizable?

(b) Consider the matrix

$$A = \begin{bmatrix} 2 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Show that $\det(\lambda I - A) = (\lambda - 1)^3$. Put it into the Jordan canonical form.